
Multi-Objective Problem Pareto Front Metamodeling Optimization

Using NSGA-II

Abstract

Though neural networks have been applied on approximating Pareto fronts of multi-objective

optimization problems using surrogate models, existing works have focused on categorizing

optimization genetic algorithms with BPNN surrogate models. However, this paper explores

specifically the use of the NSGA-II algorithm with a BPNN surrogate model, with the aid of the

ZDT1 test function. The exploration concluded the effectiveness of NSGA-II in approximating the

Pareto front with a surrogate model of a multi-objective optimization problem using the IGD value

and HV indicator of the obtained Pareto front.

Keywords: multi-objective optimization; surrogate model; BPNN; NSGA-II

Contents

1 Introduction .. 2

2 Construction of the Surrogate Model ... 4

2.1 BPNN .. 4

2.2 Test Function: ZDT1 ... 6

3 Multi-Objective Optimization Based on NSGA-II .. 8

4 Results and Discussion .. 10

5 Result Analysis .. 12

5.1 Error Analysis ... 12

5.2 Sensitivity Analysis... 12

6 Conclusion ... 13

1 Introduction

Multi-objective optimization is a branch of mathematical optimization where multiple

objective functions of the same inputs are to be optimized. Multi-objective optimization presents

a challenge in mathematics and computer science, for the need of an optimal decision in the trade-

off between conflicting objective functions – bringing one closer to one objective comes at a cost

of moving further away from others. Therefore, there is no single solution in which all of the

objective functions are maximized. Rather, a set of solutions, called the Pareto front, is the result

of a multi-objective optimization problem, in which the points represent the optimal points where

no movements can make an objective better-off without making another worse-off. The set of

points form a n-dimensional manifold that separates the space into three regions: an infeasible

region that cannot be reached under any input within their domains, a nonoptimal region where

changing an input could improve an objective without making another worse-off, and the manifold

itself consisting of the optimal solutions. Because of the challenge multi-objective optimization

presents, this paper aims to explore the use of neural networks in finding a surrogate model of the

Pareto front.

Figure 1. The Pareto front of a 2-objective optimization problem.

A surrogate model, or metamodel, is used to model the outcome of some other model given

an input. In the case of finding the Pareto front in a multi-objective problem, since finding the

Pareto front given a dataset requires large amounts of computational costs, and finding an exact

function describing the Pareto front is impossible, we use a neural network to find a surrogate

model, which greatly reduces the computing needed in optimizing multi-objective problems by

modeling the Pareto front.

Because of the wide application of multi-objective optimization in fields of not only

science, but economics and finance, the demand to find solutions of these problems has led to the

use of neural networks, in the assistance of surrogate models, in approximating the Pareto front of

multi-objective optimization problems. For example, Díaz-Manríquez et al.1 takes a mathematical

approach and analyzes the integration of different surrogate models into multi-objective

evolutionary algorithms, while Schweidtmann et al.2 takes the TS-EMO algorithm into application,

optimizing the performance of chemical processes. This paper, however, aims specifically to

explore and optimize the use of NSGA-II in combination of a BPNN surrogate model to

approximate the Pareto front of multi-objective optimization, with the aid of the ZDT1 test

function.

2 Construction of the Surrogate Model

2.1 BPNN

 BPNN, or backpropagation neural network, is a type of artificial neural network that uses

the backpropagation algorithm to update weights in the individual neurons of the neural network,

based on the gradient of the loss function with respect to the weights, in order to minimize the loss

function.

Figure 2. Backpropagation algorithm flow chart.

An artificial neural network consists of individual neurons, organized in layers whose

properties include a step function and a vector consisting of weights. Each node, or neuron, of the

network receives an input from the neurons in the previous layer, multiplies it with the weight, and

runs the result through the step function and outputs the result to the neurons in the next layer, as

shown in Figures 3 and 4.

Figure 3. The mechanism of a single neuron.

In back propagation, random weights are selected for each of the neurons. Then, the output

is evaluated from a sample input from the training set. The weights of the neurons in the hidden

layer is then adjusted to minimize the error between the calculated output and the desired output,

given by the training data. Advantages of backpropagation includes its efficiency and simplicity,

as well as the normality of using BPNN as a standard method that generally outperforms other

algorithms.

Figure 4. Visual representation of a feedforward artificial neural network.

2.2 Test Function: ZDT1

 In order to evaluate the performance of NSGA-II in combination with a BPNN surrogate

model, we need data of a multi-objective optimization problem to train the genetic algorithm.

Rather than using data from the real world, we use a test function in this case, just to demonstrate

the capability of NSGA-II. Since synthetic test functions are generally3 intentionally difficult for

an algorithm to find a solution to but computationally efficient, they are ideal for the exploration

here of the genetic algorithm as it can efficiently evaluate an algorithm, not only fast, but

comprehensively as it tests the algorithm’s capability to bypass difficulties that are present in real

life optimization problems.

 Therefore, the ZDT14 test function can perform optimally in this scenario – genetic

algorithms find it difficult to optimize, but the computation is relatively simple. The two objective

functions of the bi-objective ZDT1 is expressed as 𝑓 and 𝑔 in the following:

⎩
⎪⎪
⎨

⎪⎪
⎧𝑔 = 1 + 9 ൭෍ 𝑥௜

௡

௜ୀଶ

൱ (𝑛 − 1)ିଵ

𝑓 = min ൮𝑥ଵ, 𝑔 ቌ1 − ඨ
𝑥ଵ

𝑔
ቍ൲

 In this evaluation of NSGA-II, the number of input variables to the function is chosen to

be five, not only presenting enough difficulty for the algorithm but also allowing the algorithm to

optimize quickly. The number of objectives is also chosen to be two because of its simplicity to

visualize the results on a two-axes graph. The function is then used to generate 100 data points for

the training of the NSGA-II genetic algorithm.

Figure 5. The true Pareto front of the bi-objective ZDT1 test function.

3 Multi-Objective Optimization Based on NSGA-II

 NSGA-II is a multi-objective genetic algorithm5. It is based off of NSGA, but makes

improvements from the original in terms of efficiency and addition of elitism. It has become widely

regarded as one of the standard genetic algorithms for multi-objective optimization.

Figure 6. The framework for genetic algorithms.

Like all other genetic algorithms, NSGA-II is based off of the idea of evolution – survival

of the fittest. In NSGA-II, an initial population of individuals is inputted or is randomly generated.

A child population is then produced randomly through crossing and mutation within the parent

population. Then, in traditional genetic algorithms, a fitness function is assigned to each individual

in the new population. Based on the traits of each of the individuals, each individual has a fitness

value, and the individuals who have the highest fitness survive and reproduce in the next round.

However, in NSGA-II, solutions are sorted in fronts. Let individual 𝑖 have objective function

values 𝑓ଵ(𝑖) and 𝑓ଶ(𝑖). Then, an individual 𝑖 is said to dominate individual 𝑗 if:

 𝑓ଵ(𝑖) ≥ 𝑓ଵ(𝑗) and 𝑓ଶ(𝑖) ≥ 𝑓ଶ(𝑗) and ൫𝑓ଵ(𝑖) > 𝑓ଵ(𝑗) or 𝑓ଶ(𝑖) > 𝑓ଶ(𝑗)൯ (1)

The individuals that are dominated by no other individual is classified into F1. Then,

individuals in F1 are removed, and those that are remaining who are dominated by no other

individual are classified into F2, and so on. The top half of the sorted population remains to

reproduce in the next round. However, if a split occurs within a front, the individuals who have

the least neighbors survive to preserve diversity and discourage local optima. A diagram of the

selection process is shown in Figure 7.

Figure 7. Selection in NSGA-II.

 The NSGA-II algorithm is implemented in MATLAB using PlatEMO6, as shown in

Figure 8.

Figure 8.GUI of PlatEMO v2.6.

4 Results and Discussion

Figure 9 illustrates the Pareto optimal front obtained by NSGA-II, combined with a BPNN
surrogate model with 8 hidden layers. Figure 10 shows the performance indicators IGD and HV
of the optimization.

Figure 9. Pareto front obtained by NSGA-II.

Figure 10. Performance indicators IGD and HV

Compared to real Pareto front of ZDT1 (shown in Figure 11), it can be seen that the POF

obtained by NSGA-II fit well with the real front, which indicates the model built in this study is

reasonable.

Figure 11. Actual Pareto front of the ZDT1 test function.

5 Result Analysis

5.1 Error analysis

To better reflect the performance of the BPNN model, two widely used evaluation indicators were
employed, which can be calculated by the following equations:

MSE =
1

𝑛
෍(𝑦 − 𝑦ො)ଶ

௡

௜ୀଵ

𝑅2 =
∑ (𝑦 − 𝑦ො)

2𝑛
1

∑ (𝑦 − 𝑦ത)2𝑛
1

Where 𝑛 is the number of test samples, 𝑦 denotes the true value of responses while 𝑦ො denotes the

predicted value. Note that: the closer to 1 the 𝑅2 is, the better accuracy the model performs. Figure 9

shows the 𝑅2 analysis results.

5.2 Sensitivity Analysis

 The number of hidden layers of the BPNN was modified between four and ten. The value

of R remained above 0.93, suggesting the robustness of the model.

6 Conclusion

In this study, a BPNN is trained as the surrogate model to model the Pareto front of a multi-

objective optimization test problem, ZDT1, and the accuracy has proved to be high. The NSGA-

II algorithm is then employed to optimize the BPNN surrogate model to better fit the real Pareto

front of the problem. The results indicate the Pareto front obtained by NSGA-II and BPNN is a

good fit (R2 = 0.998) of the actual Pareto front of the ZDT1 test function.

 To further expand this study, different test functions that simulate real-world multi-

objective optimization problems can be used to test the effectiveness of the NSGA-II algorithm on

a BPNN surrogate model. An increased number of objective functions and number of input

variables can also be tested using this methodology to further support the effectiveness, or expose

the limitations of, the methodology used in this study.

References

1 Díaz-Manríquez, A., Toscano, G., Barron-Zambrano, J., & Tello-Leal, E. (2016, June 12). A

Review of Surrogate Assisted Multiobjective Evolutionary Algorithms. Retrieved September 13,

2020, from https://www.hindawi.com/journals/cin/2016/9420460/

2 Schweidtmann, A., Clayton, A., Holmes, N., Bradford, E., Bourne, R., & Lapkin, A. (2018,

July 04). Machine learning meets continuous flow chemistry: Automated optimization towards

the Pareto front of multiple objectives. Retrieved September 13, 2020, from

https://www.sciencedirect.com/science/article/pii/S1385894718312634

3 Rostami, D. (2019, July 25). Synthetic Objective Functions and ZDT1. Retrieved September

13, 2020, from https://datacrayon.com/posts/search-and-optimisation/practical-evolutionary-

algorithms/synthetic-objective-functions-and-zdt1/

4 E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary Algorithms:

Empirical Results. Evolutionary Computation, 8(2):173-195, 2000

5 Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.

doi:10.1109/4235.996017

6 Ye Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB Platform for

Evolutionary Multi-Objective Optimization [Educational Forum], IEEE Computational

Intelligence Magazine, 2017, 12(4): 73-87"

Appendix I: BPNN Implementation in MATLAB

clc

clear net

input = x;

output = y;

[n, inputnum] = size(input);

outputnum = size(output,2);

hiddenlayers=8;

input_train=input(1:0.8*n,:)';

input_test=input(0.8*n+1:end,:)';

output_train=output(1:0.8*n,:)';

output_test=output(0.8*n+1:end,:)';

net=newff(input_train,output_train,hiddenlayers,{'tansig','purelin'},'trainlm
');

net.trainParam.epochs = 2000;

net.trainParam.lr = 0.1;

net.trainParam.goal = 0.0001;

net.trainParam.max_fail = 100;

[net,per2]=train(net,input_train,output_train);

Acknowledgements

 I would like to thank Ms. Lin Chen for encouraging students at our school to pursue

research in STEM and advising this study. I would also like to thank teachers, friends, and family

who showed support during the duration of this process.

