On Higher Dimensional Orchard Visibility Problem

Shengning Zhang

Abstract

In this article, we study Pólya's orchard visibility problem in arbitrary dimension d : suppose at every integral point in \mathbb{R}^{d}, centered a small d-dimensional ball with radius r (which is considered as a tree at the integral point), given a d-dimensional ball centered at the origin O with radius R (which is considered as the orchard), it asks for the smallest r such that every ray starting from O will hit some tree in the orchard. We give both the upper and the lower bounds of the minimal value of r, say ρ in terms of R. Moreover, we prove that as $R \rightarrow \infty, \rho=\mathcal{O}\left(R^{-\frac{1}{d-1}}\right)$.

1. Introduction

Let Λ be the set of lattice points $\mathbb{Z}^{d} \backslash O$ in \mathbb{R}^{d}, where O is the origin. Let $B(O, R)$ be the closed ball in \mathbb{R}^{d} centered at O with radius $R>1$. Centering at every integral point $P \in B(O, R)$, is a small closed ball $B(P, r)$ with given small radius $r>0$. The original Pólya's orchard visibility problem considers the case $d=2$, when the disc $B(O, R)$ is thought as a round orchard and every $B(P, r)$ a tree at P, it asks for the smallest r, which we denote by ρ, so that one standing at the center O cannot see through the orchard, that is, for any ray l starting from $O, l \cap B(P, r) \neq \emptyset$ for some P.

In [1], it proved that

$$
\begin{equation*}
\frac{1}{\sqrt{R^{2}+1}}<\rho<\frac{1}{R} . \tag{1.1}
\end{equation*}
$$

Indeed, in an earlier paper [2], Thomas Tracy Allen had proved that

$$
\begin{equation*}
\rho=\frac{1}{R} . \tag{1.2}
\end{equation*}
$$

In this paper, we'd like to study the general Pólya's orchard problem in arbitrary dimension d and prove similar bounds as in (1.1). Our strategy follows [3], where, however, only deals with the 2 and 3 dimensional cases.

2. LOWER BOUNDS

Consider in \mathbb{R}^{d} the d-dimensional cuboid C with diagonal vertices O and $D:=$ $(1,1, \cdots, 1,[R]+1)$, where $[R]$ is the floor function of R. Then

$$
C \cap \mathbb{Z}^{d}=\left\{\left(x_{1}, \cdots, x_{d}\right) \in \mathbb{Z}^{d} \mid x_{i} \in[0,1], \forall i=1, \cdots, d-1 ; x_{d} \in[0,[R]+1]\right\}
$$

Apparently, D is not in $B(O, R)$. The segment $O D$ is of the length $\sqrt{(d-1)+R^{2}}$, and any $P \in C \cap \mathbb{Z}^{d}$ has the distance squared $\operatorname{dist}(P, O D)^{2}$ to $O D$
(2.1) $\frac{\left(d-1+([R]+1)^{2}\right)\left(x_{1}^{2}+\cdots+x_{d}^{2}\right)-\left(x_{1}+\cdots+x_{d-1}+([R]+1) x_{d}\right)^{2}}{d-1+([R]+1)^{2}}$

This lead us to our first result, which is a direct generalization to the first inequality of (1.1).

Proposition 1. notations as above

$$
\begin{equation*}
\frac{\sqrt{d-1}}{\sqrt{d-1+([R]+1)^{2}}}<\rho \tag{2.2}
\end{equation*}
$$

Proof: Consider the formula (2.1), apparently that among all integral points in C other than O and $D, P_{0}=\{0, \cdots, 0,1\}$ minimize the expression, when

$$
\operatorname{dist}\left(P_{0}, O D\right)^{2}=\frac{d-1}{d-1+([R]+1)^{2}}
$$

(see the figure below)

Figure 1
So if the tree radius r can block the orchard, it must bigger than $\frac{\sqrt{d-1}}{\sqrt{d-1+([R]+1)^{2}}}$. This completes the proof.

The proposition tells us that ρ grows faster than the rate of R^{-1} as R goes to infinity, however, it is not the exact rate of growth of ρ, so we want a better lower bound of ρ in terms of R. Indeed, the proof of the proposition tells us that, to obtain such a lower bound, we have to consider a "finer" solid containing the ray than the coboid C above. To use such a solid in higher dimension, we have to use the volume formula of a lattice polyhedron in higher dimension developed by Macdonald in [4], which is the generalization of Pick's Theorem used in [3, Theorem 2.2]. Now we summarize below.

Let $\mathbb{Z}^{d} \subset \mathbb{R}^{d}$ be the standard integral lattice, X a d-dimensional polyhedra in \mathbb{R}^{d} whose vertices are all in \mathbb{Z}^{d}. Let ∂X be the boundary of X, which can be viewed as a $(d-1)$ - simplicial complex. For any integer $n>0$, write

$$
L(n, X)=\left|X \cap \frac{1}{n} \mathbb{Z}^{d}\right|,
$$

and

$$
M(n, X)=L(n, X)-\frac{1}{2} L(n, \partial X)
$$

then, we have the volume of X can be computed by:
Proposition 2 (Macdonald's Theorem). The volume of the polyhedra $\operatorname{Vol}(X)$ equals

$$
\frac{2}{(d-1) d!} \sum_{i=0}^{d-1}(-1)^{i} M(d-1-i, X)\binom{d-1}{i}
$$

where $M(0, X)=1$ if d is even, $M(0, X)=0$ if d is odd.
Now we give us first theorem
Theorem 1. There is a constant $c>0$ such that

$$
\begin{equation*}
([R]+1) \rho^{d-1}>c \tag{2.3}
\end{equation*}
$$

Remark 1. The constant c is given by the volume of a polyhedra, which can be computed using Macdonald's Theorem above. The key is to construct a proper polyhedra, which will be clear in the proof of the theorem.

Lemma 1. Point $Q \in \mathbb{Z}^{d} \cap B(O, R)$, if for any $P \in \mathbb{Z}^{d} \cap B(O, R)$, $O B \cap B(P, r)=$ \emptyset, then the coordinates of Q are coprime, that is, if $Q=\left(a_{1}, \cdots, a_{d}\right)$ then $\operatorname{gcd}\left(a_{1}, \cdots, a_{d}\right)=1$.

The lemma comes from an easy observation. Suppose $\operatorname{gcd}\left(a_{1}, \cdots, a_{d}\right)=d>$ 1, then $P_{1}=\frac{1}{d}\left(a_{1}, \cdots, a_{d}\right) \in \mathbb{Z}^{d} \cap B(O, R)$ and obviously $O B \cap B\left(P_{1}, r\right) \neq \emptyset$.

Lemma 2. Let l be any ray starting from O, if point $P \in \mathbb{Z}^{d} \cap B(O, R), P \notin l$ such that $\operatorname{dist}(P, l)$ is minimal, then the coordinates of P are coprime.

Suppose the coordinates of P are coprime with greatest common divisor $d>1$, then $\operatorname{dist}\left(\frac{1}{d} P, l\right)<\operatorname{dist}(P, l)$. Contradiction.

To carry out our argument in high dimension, we have to generalize the result to Lemma 2 from a ray l to a family of geometric objects which we called diamonds with a diagonal, and is defined as follow:
Definition 1. In \mathbb{R}^{d}, for any positive integer $n \leq d$, a n-dimensional diamond \mathfrak{D} with a diagonal I is defined as follow:
(1) A 1-dimensional diamond \mathfrak{D} is nothing but a segment that start from the origin O to a point $P \neq O$ in \mathbb{R}^{d} and its diagonal I is itself;
(2) Suppose for any $i \leq n$, the i-dimensional diamonds with a diagonal are well-defined, then a n-dimensional diamond \mathfrak{D}_{n} with a diagonal I_{n} is defined base on some n-dimensional diamond \mathfrak{D}_{n-1} with a diagonal I_{n-1} : let V_{n-1} be the $(n-1)$-dimensional vector space generated by vectors in \mathfrak{D}_{n-1}, and P_{n} a point in $\mathbb{R}^{d} \backslash V_{n-1}$. Consider vectors $\boldsymbol{O} \boldsymbol{I}_{n-\mathbf{1}}$ and $\boldsymbol{O} \boldsymbol{P}_{\boldsymbol{n}}$, then define Q_{n} be the end point of $\boldsymbol{O} \boldsymbol{I}_{\boldsymbol{n}-\mathbf{1}}-\boldsymbol{O} \boldsymbol{P}_{\boldsymbol{n}} . \mathfrak{D}_{n}$ is defined to be the convex hull of $\mathfrak{D}_{n-1} \cup\left\{P_{n}, Q_{n}\right\}$, and its diagonal is $I_{n}:=I_{n-1}$.

Figure 2. an example of 1,2 and 3-diamonds

Lemma 3. Let \mathfrak{D} be a n-dimensional diamond with a diagonal I in \mathbb{R}^{d}, $n<d$, V be n-dimensional subspace in \mathbb{R}^{d} generated by \mathfrak{D}. Now if a point $P \in \mathbb{Z}^{d} \cap$ $B(O, R), P \notin V$ such that $\operatorname{dist}(P, \mathfrak{D})$ is minimal, then the coordinates of P are coprime.

Suppose $A \in \mathfrak{D}$ is the point such that $\operatorname{dist}(P, \mathfrak{D})=\operatorname{dist}(P, A)=a$. Consider the triangle $\triangle O A P$, since \mathfrak{D} is a convex hull by the definition, the segment $O A \subset \mathfrak{D}$. Now if the greatest common divisor of the coordinates of P is $m>1$,
consider the point $Q=\frac{1}{m} P \in O P$. Find a point $Q^{\prime} \in O A \subset \mathfrak{D}$ such that $Q Q^{\prime} \| A P$, then apparently that $\operatorname{dist}(Q, \mathfrak{D})<\operatorname{dist}(P, \mathfrak{D})$. Contradiction!

Proof of the theorem: Consider the point $D_{1}:=D$ given above, we view the segment $O D$ as a vector from the origin O to D and denote it by \boldsymbol{l}. Among all integral points in $B(O, R)$, find P_{2} in the first quadrant (that is, all the points are of nonnegative coordinates) be the one of minimal distance to \boldsymbol{l}. Write the minimal distance ε_{1}. From the lemmas above, we know the coordinates of P_{2} are coprime. View the segment $O P_{2}$ as a vector and denote it by \boldsymbol{v}_{1}, and define vector $\boldsymbol{u}_{1}:=\boldsymbol{l}-\boldsymbol{v}_{1}$, define the two dimensional diamond D_{2} be the parallelogram spanned by \boldsymbol{v}_{1} and \boldsymbol{u}_{1}. From the two lemmas above, D_{2} does not contain any integral points of Λ other than the 4 vertices. Denote the 2 -dimensional plane spanned by \boldsymbol{v}_{1} and \boldsymbol{u}_{1} by V_{2}. Using our notion of diamond, D_{2} is a 2 -dimensional diamond with a diagonal l.

Now among all integral points in $B(O, R) \backslash V_{2}$, find one P_{3} in the first quadrant of the minimal distance to $V_{2} \cap B(O, R)$. Write the minimal distance ε_{2}. Consider the 2-dimensional diamond D_{2} with diagonal \boldsymbol{l} and the point P_{3}, by Definition 1, they together define a 3 -dimensional diamond D_{3} with diagonal \boldsymbol{l}. By Lemma 3 , all the coordinates of P_{3} are coprime, D_{3} contains no integral points other than the 6 vertices. Denote the 3 -dimensional vector space generated by vectors in D_{3} by V_{3}.

Keep this process, for all integer $i=1,2, \cdots, d$, we obtain i-dimensional diamond D_{i} with diagonal $\boldsymbol{l}, V_{i}=\operatorname{span} D_{i}$, integral points P_{i} in the first quadrant such that
(a) $\operatorname{dist}\left(P_{i}, V_{i-1} \cap V_{i}\right)=\varepsilon_{i-1}$ is minimal among all integral points in $B(O, R) \backslash V_{i-1}$;
(b) D_{i} is the diamond constructed by D_{i-1} and P_{i};
(c) $\quad D_{i}$ contains no integral points other than its vertices.

It is easy to see, from our construction, the volume of D_{i} is

$$
\begin{equation*}
\operatorname{Vol}\left(D_{i}\right)=\frac{2^{i-1}}{i!} \varepsilon_{1} \cdots \varepsilon_{i-1}([R]+1) \tag{2.4}
\end{equation*}
$$

In particular, Write $\mathfrak{D}:=D-d$, its volume is

$$
\begin{equation*}
\operatorname{Vol}(\mathfrak{D})=\frac{2^{d-1}}{d!} \varepsilon_{1} \cdots \varepsilon_{d-1}([R]+1) \tag{2.5}
\end{equation*}
$$

which can also be calculated by Macdonald's formula as in Proposition 2. On the other hand, By our construction of \mathfrak{D}, if the tree radius r is such that every ray starting from O and passing through one point in \mathfrak{D} will be blocked by some tree, then $r>\varepsilon_{i}$ for any i. So we have

$$
\begin{equation*}
\frac{2^{d-1}}{d!} r^{d-1}([R]+1)>\operatorname{Vol}(\mathfrak{D}) . \tag{2.6}
\end{equation*}
$$

Writing

$$
\begin{equation*}
c=\frac{d!\operatorname{Vol}(\mathfrak{D})}{2^{d-1}} \tag{2.7}
\end{equation*}
$$

we complete the proof.

Remark 2. If $d=2, \operatorname{Vol}(\mathfrak{D})=\operatorname{Vol}\left(D_{2}\right)=1$, then the Theorem tells that

$$
\begin{equation*}
([R]+1) \rho>1, \tag{2.8}
\end{equation*}
$$

which reproduces the result in [3, Proposition 2.4].

If $d=3 \operatorname{Vol}(\mathfrak{D})=\operatorname{Vol}\left(D_{3}\right)=\frac{2}{3} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2}=\frac{1}{3}$, then the theorem tells that

$$
\begin{equation*}
([R]+1) \rho^{2}>\frac{1}{2} \tag{2.9}
\end{equation*}
$$

which is better than the result in [3, Proposition 4.4].

3. Upper bounds

In this section we give an upper bound of ρ in terms of R. The key ingredient is again Minkowski's theorem as [3, Theorem 4.1], which we summarize below.

Proposition 3 (Minkowski's Theorem). Let m be a positive integer and $F \subset$ \mathbb{R}^{d} a domain satisfying
(a) F is symmetric with respect to O;
(b) F is convex;
(c) $\operatorname{Vol}(F)>m 2^{d}$.

Then F contains at least m pairs of points $\pm A_{i} \in \mathbb{Z}^{d} \backslash O, 1 \leq i \leq m$, which are distinct from each other.

Now we state an upper bound of ρ. The idea is essentially same to [3, §4], where, however, only deals with the 3 -dimensional case.

Theorem 2. There is a constant $C>0$, such that

$$
\begin{equation*}
R \rho^{d-1}<C \tag{3.1}
\end{equation*}
$$

Proof: For any diameter $A A^{\prime}$ of the ball $B(O, R)$, let's consider the $d-1$ dimensional hyperellipsoid $E \subset \mathbb{R}^{d}$ as follow:
(i) $A A^{\prime}$ is a long axis of E;
(ii) all other semi-axes of E are equal of length h.

Indeed, consider the function of d variables:

$$
F\left(x_{1}, \cdots, x_{d}\right):=\frac{x_{1}^{2}}{h^{2}}+\cdots+\frac{x_{d-1}^{2}}{h^{2}}+\frac{x_{d}^{2}}{R^{2}}
$$

then $F\left(x_{1}, \cdots, x_{d}\right)=1$ gives the hyperellipsoid when $A A^{\prime}$ is lying in the $x_{d^{-}}$ axis. Generally, if the line $A A^{\prime}$ has a unit directional vector \vec{u}_{d}, extend it to a orthnormal basis $\beta:=\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{d-1}, \boldsymbol{u}_{d}\right\}$ of \mathbb{R}^{d}. Then there exists a unitary transformation $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ which sends β to the standard orthnormal basis $\{(1,0, \cdots, 0), \cdots,(0, \cdots, 0,1)\}$ such that $T\left(\boldsymbol{u}_{d}\right)=(0, \cdots, 0,1)$. Then the $(d-1)$-dimensional hyperellipsoid E has equation $F\left(T\left(x_{1}, \cdots, x_{d}\right)\right)=1$. See Figure 3.

Figure 3

Now let $F \subset \mathbb{R}^{d}$ be the domain enclosed by E (including the points of E). Apparently, F satisfies the condition (a) and (b) of Minkowski's Theorem. Moreover, it is known that the volume of the hyperellipsoid is

$$
\begin{equation*}
\frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}+1\right)} h^{d-1} R \tag{3.2}
\end{equation*}
$$

here Γ is the gamma function, so

$$
\begin{equation*}
\Gamma\left(\frac{d}{2}+1\right)=\frac{d}{2} \Gamma\left(\frac{d}{2}\right)=\frac{d}{2}\left(\frac{d}{2}-1\right) \cdots \gamma_{0} \tag{3.3}
\end{equation*}
$$

where $\gamma_{0}=1$ if d is even, $\gamma_{0}=\frac{\pi}{2}$ if d is odd. By Minkowski's Theorem, if we choose h such that

$$
\begin{equation*}
\frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}+1\right)} h^{d-1} R=2^{d}+\varepsilon \tag{3.4}
\end{equation*}
$$

where ε is an arbitrary positive real number, then F contains an integral point other than O. This implies that, if we set $C=\frac{\left(2^{d}+\varepsilon\right) \Gamma\left(\frac{d}{2}+1\right)}{\pi^{\frac{d}{2}}}$, and the tree radius $r=C R^{-\frac{1}{d-1}}$, then any ray segment $O A$ starting from O will be blocked by some tree at the integral point contained in F we constructed as above. Since $\rho<r$, that we complete the proof.

Combining Theorem 1 and Theorem 2, we obtain the main result of this article:
Theorem 3. For d-dimensional orchard visibility problem, as the radius of orchard R goes to infinity,

$$
\begin{equation*}
\rho=\mathcal{O}\left(R^{-\frac{1}{d-1}}\right) \tag{3.5}
\end{equation*}
$$

4. Some Further Thoughts

We can still ask a lot of questions concerning the orchard visibility problem in arbitrary dimension. For example, for $d=2$, it has been proved in [2] that $\rho=\frac{1}{R}$, or

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \rho R=1 \tag{4.1}
\end{equation*}
$$

Inspired by our results, it is natural to ask if we can find a constant l for dimension d such that

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \rho^{d-1} R=l \tag{4.2}
\end{equation*}
$$

However, our estimation in this article using polyhedra is apparently not precise and fine enough for such a conclusion. We will explore this problem in the future.

References

[1] Clyde P. Kruskal The orchard visibility problem and some variants, Journal of computer and system sciences, 74 (2008) 587-597.
[2] Thomas Tracy Allen Polya's Orchard Problem,The American Mathematical Monthly, Vol. 93, No. 2 (1986) 98-104.
[3] Alexandru Hening and Michael Kelly On Polya's Orchard Problem,Rose-Hulman Undergraduate Mathematics Journal: Vol. 7 : Iss. 2 , Article 9.
[4] I. G. Macdonald The volume of a lattice polyhedron, Mathematical Proceedings of the Cambridge Philosophical Society, 59 (1963) 719-726.

