ON HIGHER DIMENSIONAL ORCHARD VISIBILITY PROBLEM

Shengning Zhang

ABSTRACT. In this article, we study Pólya's orchard visibility problem in arbitrary dimension d: suppose at every integral point in \mathbb{R}^d , centered a small d-dimensional ball with radius r (which is considered as a tree at the integral point), given a d-dimensional ball centered at the origin O with radius R (which is considered as the orchard), it asks for the smallest r such that every ray starting from O will hit some tree in the orchard. We give both the upper and the lower bounds of the minimal value of r, say ρ in terms of R. Moreover, we prove that as $R \to \infty$, $\rho = O(R^{-\frac{1}{d-1}})$.

1. INTRODUCTION

Let Λ be the set of lattice points $\mathbb{Z}^d \setminus O$ in \mathbb{R}^d , where O is the origin. Let B(O, R) be the closed ball in \mathbb{R}^d centered at O with radius R > 1. Centering at every integral point $P \in B(O, R)$, is a small closed ball B(P, r) with given small radius r > 0. The original Pólya's orchard visibility problem considers the case d = 2, when the disc B(O, R) is thought as a round orchard and every B(P, r) a tree at P, it asks for the smallest r, which we denote by ρ , so that one standing at the center O cannot see through the orchard, that is, for any ray l starting from $O, l \cap B(P, r) \neq \emptyset$ for some P.

In [1], it proved that

(1.1)
$$\frac{1}{\sqrt{R^2+1}} < \rho < \frac{1}{R}.$$

Indeed, in an earlier paper [2], Thomas Tracy Allen had proved that

(1.2)
$$\rho = \frac{1}{R}$$

In this paper, we'd like to study the general Pólya's orchard problem in arbitrary dimension d and prove similar bounds as in (1.1). Our strategy follows [3], where, however, only deals with the 2 and 3 dimensional cases.

Shengning Zhang

2. Lower bounds

Consider in \mathbb{R}^d the *d*-dimensional cuboid *C* with diagonal vertices *O* and *D* := $(1, 1, \dots, 1, [R] + 1)$, where [R] is the floor function of *R*. Then $\alpha \sim \pi d$ ($) = \pi d + \pi = [0, 1]$ 11

$$C \cap \mathbb{Z}^{d} = \{ (x_1, \cdots, x_d) \in \mathbb{Z}^{d} \mid x_i \in [0, 1], \forall i = 1, \cdots, d-1; x_d \in [0, [R] + 1] \}.$$

Apparently, D is not in B(O, R). The segment OD is of the length $\sqrt{(d-1)+R^2}$, and any $P \in C \cap \mathbb{Z}^d$ has the distance squared $dist(P,OD)^2$ to OD

(2.1)
$$\frac{(d-1+([R]+1)^2)(x_1^2+\cdots+x_d^2)-(x_1+\cdots+x_{d-1}+([R]+1)x_d)^2}{d-1+([R]+1)^2}$$

This lead us to our first result, which is a direct generalization to the first inequality of (1.1).

PROPOSITION 1. notations as above

(2.2)
$$\frac{\sqrt{d-1}}{\sqrt{d-1+([R]+1)^2}} < \rho.$$

PROOF: Consider the formula (2.1), apparently that among all integral points in C other than O and D, $P_0 = \{0, \dots, 0, 1\}$ minimize the expression, when 1 1

$$dist(P_0, OD)^2 = \frac{d-1}{d-1+([R]+1)^2}$$

(see the figure below)

FIGURE 1

So if the tree radius r can block the orchard, it must bigger than $\frac{\sqrt{d-1}}{\sqrt{d-1+([R]+1)^2}}$. This completes the proof.

The proposition tells us that ρ grows faster than the rate of R^{-1} as R goes to infinity, however, it is not the exact rate of growth of ρ , so we want a better lower bound of ρ in terms of R. Indeed, the proof of the proposition tells us that, to obtain such a lower bound, we have to consider a "finer" solid containing the ray than the coboid C above. To use such a solid in higher dimension, we have to use the volume formula of a lattice polyhedron in higher dimension developed by Macdonald in [4], which is the generalization of Pick's Theorem used in [3, Theorem 2.2]. Now we summarize below.

Let $\mathbb{Z}^d \subset \mathbb{R}^d$ be the standard integral lattice, X a *d*-dimensional polyhedra in \mathbb{R}^d whose vertices are all in \mathbb{Z}^d . Let ∂X be the boundary of X, which can be viewed as a (d-1)- simplicial complex. For any integer n > 0, write

$$L(n,X) = |X \cap \frac{1}{n}\mathbb{Z}^d|,$$

and

$$M(n,X) = L(n,X) - \frac{1}{2}L(n,\partial X),$$

then, we have the volume of X can be computed by:

PROPOSITION 2 (Macdonald's Theorem). The volume of the polyhedra Vol(X) equals

$$\frac{2}{(d-1)d!} \sum_{i=0}^{d-1} (-1)^i M(d-1-i,X) \binom{d-1}{i},$$

where M(0, X) = 1 if d is even, M(0, X) = 0 if d is odd.

Now we give us first theorem

THEOREM 1. There is a constant c > 0 such that

(2.3)
$$([R]+1)\rho^{d-1} > c.$$

Remark 1. The constant c is given by the volume of a polyhedra, which can be computed using Macdonald's Theorem above. The key is to construct a proper polyhedra, which will be clear in the proof of the theorem.

LEMMA 1. Point $Q \in \mathbb{Z}^d \cap B(O, R)$, if for any $P \in \mathbb{Z}^d \cap B(O, R)$, $OB \cap B(P, r) = \emptyset$, then the coordinates of Q are coprime, that is, if $Q = (a_1, \dots, a_d)$ then $gcd(a_1, \dots, a_d) = 1$.

The lemma comes from an easy observation. Suppose $gcd(a_1, \dots, a_d) = d > 1$, then $P_1 = \frac{1}{d}(a_1, \dots, a_d) \in \mathbb{Z}^d \cap B(O, R)$ and obviously $OB \cap B(P_1, r) \neq \emptyset$. \Box

LEMMA 2. Let l be any ray starting from O, if point $P \in \mathbb{Z}^d \cap B(O, R)$, $P \notin l$ such that dist(P, l) is minimal, then the coordinates of P are coprime.

Shengning Zhang

Suppose the coordinates of P are coprime with greatest common divisor d > 1, then $dist(\frac{1}{d}P, l) < dist(P, l)$. Contradiction.

To carry out our argument in high dimension, we have to generalize the result to Lemma 2 from a ray l to a family of geometric objects which we called diamonds with a diagonal, and is defined as follow:

DEFINITION 1. In \mathbb{R}^d , for any positive integer $n \leq d$, a *n*-dimensional diamond \mathfrak{D} with a diagonal *I* is defined as follow:

- (1) A 1-dimensional diamond \mathfrak{D} is nothing but a segment that start from the origin O to a point $P \neq O$ in \mathbb{R}^d and its diagonal I is itself;
- (2) Suppose for any $i \leq n$, the *i*-dimensional diamonds with a diagonal are well-defined, then a *n*-dimensional diamond \mathfrak{D}_n with a diagonal I_n is defined base on some *n*-dimensional diamond \mathfrak{D}_{n-1} with a diagonal I_{n-1} : let V_{n-1} be the (n-1)-dimensional vector space generated by vectors in \mathfrak{D}_{n-1} , and P_n a point in $\mathbb{R}^d \setminus V_{n-1}$. Consider vectors OI_{n-1} and OP_n , then define Q_n be the end point of $OI_{n-1} OP_n$. \mathfrak{D}_n is defined to be the convex hull of $\mathfrak{D}_{n-1} \cup \{P_n, Q_n\}$, and its diagonal is $I_n := I_{n-1}$.

FIGURE 2. an example of 1,2 and 3-diamonds

LEMMA 3. Let \mathfrak{D} be a n-dimensional diamond with a diagonal I in \mathbb{R}^d , n < d, V be n-dimensional subspace in \mathbb{R}^d generated by \mathfrak{D} . Now if a point $P \in \mathbb{Z}^d \cap B(O, R)$, $P \notin V$ such that $dist(P, \mathfrak{D})$ is minimal, then the coordinates of P are coprime.

Suppose $A \in \mathfrak{D}$ is the point such that $dist(P, \mathfrak{D}) = dist(P, A) = a$. Consider the triangle ΔOAP , since \mathfrak{D} is a convex hull by the definition, the segment $OA \subset \mathfrak{D}$. Now if the greatest common divisor of the coordinates of P is m > 1, consider the point $Q = \frac{1}{m}P \in OP$. Find a point $Q' \in OA \subset \mathfrak{D}$ such that $QQ' \parallel AP$, then apparently that $dist(Q,\mathfrak{D}) < dist(P,\mathfrak{D})$. Contradiction!

PROOF OF THE THEOREM: Consider the point $D_1 := D$ given above, we view the segment OD as a vector from the origin O to D and denote it by l. Among all integral points in B(O, R), find P_2 in the first quadrant (that is, all the points are of nonnegative coordinates) be the one of minimal distance to l. Write the minimal distance ε_1 . From the lemmas above, we know the coordinates of P_2 are coprime. View the segment OP_2 as a vector and denote it by v_1 , and define vector $u_1 := l - v_1$, define the two dimensional diamond D_2 be the parallelogram spanned by v_1 and u_1 . From the two lemmas above, D_2 does not contain any integral points of Λ other than the 4 vertices. Denote the 2-dimensional plane spanned by v_1 and u_1 by V_2 . Using our notion of diamond, D_2 is a 2-dimensional diamond with a diagonal l.

Now among all integral points in $B(O, R) \setminus V_2$, find one P_3 in the first quadrant of the minimal distance to $V_2 \cap B(O, R)$. Write the minimal distance ε_2 . Consider the 2-dimensional diamond D_2 with diagonal l and the point P_3 , by Definition 1, they together define a 3-dimensional diamond D_3 with diagonal l. By Lemma 3, all the coordinates of P_3 are coprime, D_3 contains no integral points other than the 6 vertices. Denote the 3-dimensional vector space generated by vectors in D_3 by V_3 .

Keep this process, for all integer $i = 1, 2, \dots, d$, we obtain *i*-dimensional diamond D_i with diagonal l, $V_i = spanD_i$, integral points P_i in the first quadrant such that

- (a) $dist(P_i, V_{i-1} \cap V_i) = \varepsilon_{i-1}$ is minimal among all integral points in $B(O, R) \setminus V_{i-1}$;
- (b) D_i is the diamond constructed by D_{i-1} and P_i ;
- (c) D_i contains no integral points other than its vertices.

It is easy to see, from our construction, the volume of D_i is

(2.4)
$$Vol(D_i) = \frac{2^{i-1}}{i!} \varepsilon_1 \cdots \varepsilon_{i-1}([R]+1).$$

In particular, Write $\mathfrak{D} := D - d$, its volume is

(2.5)
$$Vol(\mathfrak{D}) = \frac{2^{d-1}}{d!} \varepsilon_1 \cdots \varepsilon_{d-1}([R]+1),$$

which can also be calculated by Macdonald's formula as in Proposition 2. On the other hand, By our construction of \mathfrak{D} , if the tree radius r is such that every ray starting from O and passing through one point in \mathfrak{D} will be blocked by some tree, then $r > \varepsilon_i$ for any i. So we have

(2.6)
$$\frac{2^{d-1}}{d!}r^{d-1}([R]+1) > Vol(\mathfrak{D}).$$

Writing

(2.7)
$$c = \frac{d! Vol(\mathfrak{D})}{2^{d-1}},$$

we complete the proof.

Remark 2. If d = 2, $Vol(\mathfrak{D}) = Vol(D_2) = 1$, then the Theorem tells that (2.8) $([R] + 1)\rho > 1$,

which reproduces the result in [3, Proposition 2.4].

If
$$d = 3$$
, $Vol(\mathfrak{D}) = Vol(D_3) = \frac{2}{3} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} = \frac{1}{3}$, then the theorem tells that
(2.9) $([R] + 1)\rho^2 > \frac{1}{2}$,

which is better than the result in [3, Proposition 4.4].

3. Upper bounds

In this section we give an upper bound of ρ in terms of R. The key ingredient is again Minkowski's theorem as [3, Theorem 4.1], which we summarize below.

PROPOSITION 3 (Minkowski's Theorem). Let m be a positive integer and $F \subset \mathbb{R}^d$ a domain satisfying

- (a) F is symmetric with respect to O;
- (b) F is convex;
- (c) $Vol(F) > m2^d$.

Then F contains at least m pairs of points $\pm A_i \in \mathbb{Z}^d \setminus O$, $1 \leq i \leq m$, which are distinct from each other.

Now we state an upper bound of ρ . The idea is essentially same to [3, §4], where, however, only deals with the 3-dimensional case.

THEOREM 2. There is a constant C > 0, such that

$$(3.1) R\rho^{d-1} < C.$$

PROOF: For any diameter AA' of the ball B(O, R), let's consider the d-1dimensional hyperellipsoid $E \subset \mathbb{R}^d$ as follow:

(i) AA' is a long axis of E;

(ii) all other semi-axes of E are equal of length h.

Indeed, consider the function of d variables:

$$F(x_1, \cdots, x_d) := \frac{x_1^2}{h^2} + \cdots + \frac{x_{d-1}^2}{h^2} + \frac{x_d^2}{R^2},$$

6

then $F(x_1, \dots, x_d) = 1$ gives the hyperellipsoid when AA' is lying in the x_d -axis. Generally, if the line AA' has a unit directional vector \vec{u}_d , extend it to a orthnormal basis $\beta := \{u_1, \dots, u_{d-1}, u_d\}$ of \mathbb{R}^d . Then there exists a unitary transformation $T : \mathbb{R}^d \to \mathbb{R}^d$ which sends β to the standard orthnormal basis $\{(1, 0, \dots, 0), \dots, (0, \dots, 0, 1)\}$ such that $T(u_d) = (0, \dots, 0, 1)$. Then the (d-1)-dimensional hyperellipsoid E has equation $F(T(x_1, \dots, x_d)) = 1$. See Figure 3.

FIGURE 3

Now let $F \subset \mathbb{R}^d$ be the domain enclosed by E (including the points of E). Apparently, F satisfies the condition (a) and (b) of Minkowski's Theorem. Moreover, it is known that the volume of the hyperellipsoid is

(3.2)
$$\frac{\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2}+1)}h^{d-1}R$$

here Γ is the gamma function, so

(3.3)
$$\Gamma(\frac{d}{2}+1) = \frac{d}{2}\Gamma(\frac{d}{2}) = \frac{d}{2}(\frac{d}{2}-1)\cdots\gamma_0,$$

where $\gamma_0 = 1$ if d is even, $\gamma_0 = \frac{\pi}{2}$ if d is odd. By Minkowski's Theorem, if we choose h such that

(3.4)
$$\frac{\pi^{\frac{a}{2}}}{\Gamma(\frac{d}{2}+1)}h^{d-1}R = 2^d + \varepsilon,$$

where ε is an arbitrary positive real number, then F contains an integral point other than O. This implies that, if we set $C = \frac{(2^d + \varepsilon)\Gamma(\frac{d}{2}+1)}{\pi^{\frac{d}{2}}}$, and the tree radius $r = CR^{-\frac{1}{d-1}}$, then any ray segment OA starting from O will be blocked by some tree at the integral point contained in F we constructed as above. Since $\rho < r$, that we complete the proof. Combining Theorem 1 and Theorem 2, we obtain the main result of this article:

THEOREM 3. For d-dimensional orchard visibility problem, as the radius of orchard R goes to infinity,

(3.5)
$$\rho = \mathcal{O}(R^{-\frac{1}{d-1}}).$$

4. Some Further Thoughts

We can still ask a lot of questions concerning the orchard visibility problem in arbitrary dimension. For example, for d = 2, it has been proved in [2] that $\rho = \frac{1}{R}$, or

(4.1)
$$\lim_{R \to \infty} \rho R = 1.$$

Inspired by our results, it is natural to ask if we can find a constant l for dimension d such that

(4.2)
$$\lim_{R \to \infty} \rho^{d-1} R = l.$$

However, our estimation in this article using polyhedra is apparently not precise and fine enough for such a conclusion. We will explore this problem in the future.

References

- Clyde P. Kruskal The orchard visibility problem and some variants, Journal of computer and system sciences, 74 (2008) 587–597.
- Thomas Tracy Allen Polya's Orchard Problem, The American Mathematical Monthly, Vol. 93, No. 2 (1986) 98-104.
- [3] Alexandru Hening and Michael Kelly On Polya's Orchard Problem, Rose-Hulman Undergraduate Mathematics Journal: Vol. 7: Iss. 2, Article 9.
- [4] I. G. Macdonald *The volume of a lattice polyhedron*, Mathematical Proceedings of the Cambridge Philosophical Society, 59 (1963) 719-726.