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On Higher Dimensional Orchard Visibility Problem

Shengning Zhang

Abstract. In this article, we study Pólya’s orchard visibility prob-
lem in arbitrary dimension d: suppose at every integral point in Rd,
centered a small d-dimensional ball with radius r (which is considered
as a tree at the integral point), given a d-dimensional ball centered
at the origin O with radius R (which is considered as the orchard),
it asks for the smallest r such that every ray starting from O will
hit some tree in the orchard. We give both the upper and the lower
bounds of the minimal value of r, say ρ in terms of R. Moreover, we

prove that as R→∞, ρ = O(R−
1

d−1 ).

1. Introduction

Let Λ be the set of lattice points Zd\O in Rd, where O is the origin. Let
B(O,R) be the closed ball in Rd centered at O with radius R > 1. Centering
at every integral point P ∈ B(O,R), is a small closed ball B(P, r) with given
small radius r > 0. The original Pólya’s orchard visibility problem considers
the case d = 2, when the disc B(O,R) is thought as a round orchard and every
B(P, r) a tree at P , it asks for the smallest r, which we denote by ρ, so that
one standing at the center O cannot see through the orchard, that is, for any
ray l starting from O, l ∩B(P, r) 6= ∅ for some P .

In [1], it proved that

(1.1)
1√

R2 + 1
< ρ <

1

R
.

Indeed, in an earlier paper [2], Thomas Tracy Allen had proved that

(1.2) ρ =
1

R
.

In this paper, we’d like to study the general Pólya’s orchard problem in arbi-
trary dimension d and prove similar bounds as in (1.1). Our strategy follows
[3], where, however, only deals with the 2 and 3 dimensional cases.



2 Shengning Zhang

2. Lower bounds

Consider in Rd the d-dimensional cuboid C with diagonal vertices O and D :=
(1, 1, · · · , 1, [R] + 1), where [R] is the floor function of R. Then

C ∩ Zd = {(x1, · · · , xd) ∈ Zd | xi ∈ [0, 1],∀i = 1, · · · , d− 1;xd ∈ [0, [R] + 1]}.
Apparently, D is not in B(O,R). The segment OD is of the length√

(d− 1) +R2, and any P ∈ C ∩ Zd has the distance squared dist(P,OD)2

to OD

(2.1)
(d− 1 + ([R] + 1)2)(x2

1 + · · ·+ x2
d)− (x1 + · · ·+ xd−1 + ([R] + 1)xd)

2

d− 1 + ([R] + 1)2

This lead us to our first result, which is a direct generalization to the first
inequality of (1.1).

Proposition 1. notations as above

(2.2)

√
d− 1√

d− 1 + ([R] + 1)2
< ρ.

Proof: Consider the formula (2.1), apparently that among all integral
points in C other than O and D, P0 = {0, · · · , 0, 1} minimize the expression,
when

dist(P0, OD)2 =
d− 1

d− 1 + ([R] + 1)2
.

(see the figure below)

Figure 1

So if the tree radius r can block the orchard, it must bigger than
√
d−1√

d−1+([R]+1)2
.

This completes the proof. �
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The proposition tells us that ρ grows faster than the rate of R−1 as R goes to
infinity, however, it is not the exact rate of growth of ρ, so we want a better
lower bound of ρ in terms of R. Indeed, the proof of the proposition tells
us that, to obtain such a lower bound, we have to consider a “finer” solid
containing the ray than the coboid C above. To use such a solid in higher
dimension, we have to use the volume formula of a lattice polyhedron in higher
dimension developed by Macdonald in [4], which is the generalization of Pick’s
Theorem used in [3, Theorem 2.2]. Now we summarize below.

Let Zd ⊂ Rd be the standard integral lattice, X a d-dimensional polyhedra in
Rd whose vertices are all in Zd. Let ∂X be the boundary of X, which can be
viewed as a (d− 1)- simplicial complex. For any integer n > 0, write

L(n,X) = |X ∩ 1

n
Zd|,

and

M(n,X) = L(n,X)− 1

2
L(n, ∂X),

then, we have the volume of X can be computed by:

Proposition 2 (Macdonald’s Theorem). The volume of the polyhedra V ol(X)
equals

2

(d− 1)d !

d−1∑
i=0

(−1)iM(d− 1− i,X)

(
d− 1

i

)
,

where M(0, X) = 1 if d is even, M(0, X) = 0 if d is odd.

Now we give us first theorem

Theorem 1. There is a constant c > 0 such that

(2.3) ([R] + 1)ρd−1 > c.

Remark 1. The constant c is given by the volume of a polyhedra, which can be
computed using Macdonald’s Theorem above. The key is to construct a proper
polyhedra, which will be clear in the proof of the theorem.

Lemma 1. Point Q ∈ Zd∩B(O,R), if for any P ∈ Zd∩B(O,R), OB∩B(P, r) =
∅, then the coordinates of Q are coprime, that is, if Q = (a1, · · · , ad) then
gcd(a1, · · · , ad) = 1.

The lemma comes from an easy observation. Suppose gcd(a1, · · · , ad) = d >
1, then P1 = 1

d (a1, · · · , ad) ∈ Zd∩B(O,R) and obviouslyOB∩B(P1, r) 6= ∅. �

Lemma 2. Let l be any ray starting from O, if point P ∈ Zd ∩B(O,R), P /∈ l
such that dist(P, l) is minimal, then the coordinates of P are coprime.
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Suppose the coordinates of P are coprime with greatest common divisor
d > 1, then dist( 1

dP, l) < dist(P, l). Contradiction. �

To carry out our argument in high dimension, we have to generalize the result
to Lemma 2 from a ray l to a family of geometric objects which we called
diamonds with a diagonal, and is defined as follow:

Definition 1. In Rd, for any positive integer n ≤ d, a n-dimensional diamond
D with a diagonal I is defined as follow:

(1) A 1-dimensional diamond D is nothing but a segment that start from
the origin O to a point P 6= O in Rd and its diagonal I is itself;

(2) Suppose for any i ≤ n, the i-dimensional diamonds with a diagonal
are well-defined, then a n-dimensional diamond Dn with a diagonal In
is defined base on some n-dimensional diamond Dn−1 with a diagonal
In−1: let Vn−1 be the (n − 1)-dimensional vector space generated by
vectors in Dn−1, and Pn a point in Rd\Vn−1. Consider vectors OIn−1

and OPn, then define Qn be the end point of OIn−1 − OPn. Dn is
defined to be the convex hull of Dn−1 ∪ {Pn, Qn}, and its diagonal is
In := In−1.

Figure 2. an example of 1,2 and 3-diamonds

Lemma 3. Let D be a n-dimensional diamond with a diagonal I in Rd, n < d,
V be n-dimensional subspace in Rd generated by D. Now if a point P ∈ Zd ∩
B(O,R), P /∈ V such that dist(P,D) is minimal, then the coordinates of P are
coprime.

Suppose A ∈ D is the point such that dist(P,D) = dist(P,A) = a. Consider
the triangle ∆OAP , since D is a convex hull by the definition, the segment
OA ⊂ D. Now if the greatest common divisor of the coordinates of P is m > 1,
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consider the point Q = 1
mP ∈ OP . Find a point Q′ ∈ OA ⊂ D such that

QQ′ ‖ AP , then apparently that dist(Q,D) < dist(P,D). Contradiction! �

Proof of the theorem: Consider the point D1 := D given above, we
view the segment OD as a vector from the origin O to D and denote it by l.
Among all integral points in B(O,R), find P2 in the first quadrant (that is,
all the points are of nonnegative coordinates) be the one of minimal distance
to l. Write the minimal distance ε1. From the lemmas above, we know the
coordinates of P2 are coprime. View the segment OP2 as a vector and denote
it by v1, and define vector u1 := l − v1, define the two dimensional diamond
D2 be the parallelogram spanned by v1 and u1. From the two lemmas above,
D2 does not contain any integral points of Λ other than the 4 vertices. Denote
the 2-dimensional plane spanned by v1 and u1 by V2. Using our notion of
diamond, D2 is a 2-dimensional diamond with a diagonal l.

Now among all integral points in B(O,R)\V2, find one P3 in the first quad-
rant of the minimal distance to V2 ∩ B(O,R). Write the minimal distance ε2.
Consider the 2-dimensional diamond D2 with diagonal l and the point P3, by
Definition 1, they together define a 3-dimensional diamond D3 with diagonal
l. By Lemma 3, all the coordinates of P3 are coprime, D3 contains no inte-
gral points other than the 6 vertices. Denote the 3-dimensional vector space
generated by vectors in D3 by V3.

Keep this process, for all integer i = 1, 2, · · · , d, we obtain i-dimensional dia-
mond Di with diagonal l, Vi = spanDi, integral points Pi in the first quadrant
such that

(a) dist(Pi, Vi−1 ∩ Vi) = εi−1 is minimal among all integral points in
B(O,R)\Vi−1;

(b) Di is the diamond constructed by Di−1 and Pi;
(c) Di contains no integral points other than its vertices.

It is easy to see, from our construction, the volume of Di is

(2.4) V ol(Di) =
2i−1

i!
ε1 · · · εi−1([R] + 1).

In particular, Write D := D − d, its volume is

(2.5) V ol(D) =
2d−1

d!
ε1 · · · εd−1([R] + 1),

which can also be calculated by Macdonald’s formula as in Proposition 2. On
the other hand, By our construction of D, if the tree radius r is such that every
ray starting from O and passing through one point in D will be blocked by
some tree, then r > εi for any i. So we have

(2.6)
2d−1

d!
rd−1([R] + 1) > V ol(D).



6

Writing

(2.7) c =
d!V ol(D)

2d−1
,

we complete the proof. �

Remark 2. If d = 2, V ol(D) = V ol(D2) = 1, then the Theorem tells that

(2.8) ([R] + 1)ρ > 1,

which reproduces the result in [3, Proposition 2.4].

If d = 3, V ol(D) = V ol(D3) = 2
3 ×

√
2

2 ×
√

2
2 = 1

3 , then the theorem tells that

(2.9) ([R] + 1)ρ2 >
1

2
,

which is better than the result in [3, Proposition 4.4].

3. Upper bounds

In this section we give an upper bound of ρ in terms of R. The key ingredient
is again Minkowski’s theorem as [3, Theorem 4.1], which we summarize below.

Proposition 3 (Minkowski’s Theorem). Let m be a positive integer and F ⊂
Rd a domain satisfying

(a) F is symmetric with respect to O;
(b) F is convex;
(c) V ol(F ) > m2d.

Then F contains at least m pairs of points ±Ai ∈ Zd\O, 1 ≤ i ≤ m, which are
distinct from each other.

Now we state an upper bound of ρ. The idea is essentially same to [3, §4],
where, however, only deals with the 3-dimensional case.

Theorem 2. There is a constant C > 0, such that

(3.1) Rρd−1 < C.

Proof: For any diameter AA′ of the ball B(O,R), let’s consider the d− 1-
dimensional hyperellipsoid E ⊂ Rd as follow:

(i) AA′ is a long axis of E;
(ii) all other semi-axes of E are equal of length h.

Indeed, consider the function of d variables:

F (x1, · · · , xd) :=
x2

1

h2
+ · · ·+

x2
d−1

h2
+
x2
d

R2
,
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then F (x1, · · · , xd) = 1 gives the hyperellipsoid when AA′ is lying in the xd-
axis. Generally, if the line AA′ has a unit directional vector ~ud, extend it
to a orthnormal basis β := {u1, · · · ,ud−1,ud} of Rd. Then there exists a
unitary transformation T : Rd → Rd which sends β to the standard orthnormal
basis {(1, 0, · · · , 0), · · · , (0, · · · , 0, 1)} such that T (ud) = (0, · · · , 0, 1). Then the
(d − 1)-dimensional hyperellipsoid E has equation F (T (x1, · · · , xd)) = 1. See
Figure 3.

Figure 3

Now let F ⊂ Rd be the domain enclosed by E (including the points of E).
Apparently, F satisfies the condition (a) and (b) of Minkowski’s Theorem.
Moreover, it is known that the volume of the hyperellipsoid is

(3.2)
π

d
2

Γ(d2 + 1)
hd−1R,

here Γ is the gamma function, so

(3.3) Γ(
d

2
+ 1) =

d

2
Γ(
d

2
) =

d

2
(
d

2
− 1) · · · γ0,

where γ0 = 1 if d is even, γ0 = π
2 if d is odd. By Minkowski’s Theorem, if we

choose h such that

(3.4)
π

d
2

Γ(d2 + 1)
hd−1R = 2d + ε,

where ε is an arbitrary positive real number, then F contains an integral point

other than O. This implies that, if we set C =
(2d+ε)Γ( d

2 +1)

π
d
2

, and the tree radius

r = CR−
1

d−1 , then any ray segment OA starting from O will be blocked by
some tree at the integral point contained in F we constructed as above. Since
ρ < r, that we complete the proof. �
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Combining Theorem 1 and Theorem 2, we obtain the main result of this article:

Theorem 3. For d-dimensional orchard visibility problem, as the radius of
orchard R goes to infinity,

(3.5) ρ = O(R−
1

d−1 ).

4. Some Further Thoughts

We can still ask a lot of questions concerning the orchard visibility problem
in arbitrary dimension. For example, for d = 2, it has been proved in [2] that
ρ = 1

R , or

(4.1) lim
R→∞

ρR = 1.

Inspired by our results, it is natural to ask if we can find a constant l for
dimension d such that

(4.2) lim
R→∞

ρd−1R = l.

However, our estimation in this article using polyhedra is apparently not precise
and fine enough for such a conclusion. We will explore this problem in the
future.
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